Matroid Complexity and Nonsuccinct Descriptions
نویسندگان
چکیده
منابع مشابه
Matroid Complexity and Nonsuccinct Descriptions
We investigate an approach to matroid complexity that involves describing a matroid via a list of independent sets, bases, circuits, or some other family of subsets of the ground set. The computational complexity of algorithmic problems under this scheme appears to be highly dependent on the choice of input type. We define an order on the various methods of description, and we show how this ord...
متن کاملMatroid complexity and large inputs
We investigate an approach to matroid complexity that involves describing a matroid via a list of independent sets, bases, circuits, or some other family of subsets of the ground set. The computational complexity of algorithmic problems under this scheme appears to be highly dependent on the choice of input-type. We define an order on the various methods of description, and we show how this ord...
متن کاملParallel Complexity for Matroid Intersection and Matroid Parity Problems
Let two linear matroids have the same rank in matroid intersection. A maximum linear matroid intersection (maximum linear matroid parity set) is called a basic matroid intersection (basic matroid parity set), if its size is the rank of the matroid. We present that enumerating all basic matroid intersections (basic matroid parity sets) is in NC, provided that there are polynomial bounded basic m...
متن کاملMatroid Pathwidth and Code Trellis Complexity
We relate the notion of matroid pathwidth to the minimum trellis state-complexity (which we term trellis-width) of a linear code, and to the pathwidth of a graph. By reducing from the problem of computing the pathwidth of a graph, we show that the problem of determining the pathwidth of a representable matroid is NP-hard. Consequently, the problem of computing the trellis-width of a linear code...
متن کاملOn the Complexity of Matroid Isomorphism Problems
We study the complexity of testing if two given matroids are isomorphic. The problem is easily seen to be in Σ 2 . In the case of linear matroids, which are represented over polynomially growing fields, we note that the problem is unlikely to be Σ 2 -complete and is coNPhard. We show that when the rank of the matroid is bounded by a constant, linear matroid isomorphism and matroid isomorphism a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2008
ISSN: 0895-4801,1095-7146
DOI: 10.1137/050640576